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Abstract

This study describes amended parallel analysis
(APA), a novel method for dimensionality estima-
tion in unsupervised learning problems such as in-
formation retrieval (IR). At issue is the selection of
k, the number of dimensions retained under latent
semantic indexing (LSI). APA is an elaboration of
Horn’s parallel analysis, which advocates retaining
eigenvalues larger than the values we would expect
under term independence. APA operates by deriving
confidence intervals on these “null eigenvalues.” The
technique amounts to a series of non-parametric hy-
pothesis tests on the correlation matrix eigenvalues.
In the study, APA is tested along with five previous
dimensionality estimators on four standard IR test
collections. These estimates are evaluated with re-
gard to two standard IR performance metrics. APA
appears to perform well, predicting the best values of
k on three of eight observations, and never offering
the worst estimate of optimal dimensionality.

1 Introduction

Latent Semantic Indexing (LSI) uses factor-analytic
techniques to improve the inter-object similarity
function of a vector space model (VSM) IR system
[3]. Given an n X p term-document matrix A of rank
r, LSI projects the n documents and p terms into the
space spanned by the first k eigenvectors of A’A and

AA’', where k < r. Proponents of LSI argue that
this dimensionality reduction removes overfitted in-
formation from the system’s similarity model. By dis-
carding spurious inferences, dimensionality reduction
leads to better predictions of inter-document similar-
ity. Although empirical studies differ in the degree
of improvement over keyword retrieval afforded by
LSI, they do suggest that dimensionality reduction
entails an important elaboration on the standard vec-
tor space model (cf. [6, 10]).

However, LSI’s benefits depend on the severity of
its dimensionality truncation. According to Deer-
wester et al., choosing k, the number of retained di-
mensions, is “crucial” to the method’s success. Yet
in most applications of LSI, this choice is informed
by ad hoc criteria. The current study introduces
amended parallel analysis (APA), a novel method
for dimensionality estimation under LSI. Elaborat-
ing on earlier work by Horn [9], we argue that an LSI
system ought to retain those dimensions whose cor-
responding eigenvalues are significantly greater than
the eigenvalues expected if the variates (i.e. terms)
of A were statistically independent.

To pursue this argument we first describe LSI and
show how eigenvalues relate to its dimensionality
reduction. Next we introduce the motivation and
mathematics behind amended parallel analysis. In
section 3 we apply APA to four standard IR test col-
lections, comparing our method’s dimensionality es-
timations to estimates based on four standard eigen-



value analysis methods.

1.1 Latent Semantic Indexing

Dimensionality reduction under LSI is motivated by
the idea that an observed term-document matrix A
contains redundant information. Such redundancy
introduces error at the hands of the cosine similarity
metric (cf. [16]), which assumes that the system’s
terms are orthogonal. To mitigate this error, LSI
derives a low-rank approximation of A by a standard
orthogonal projection. Given the n x p matrix A
of rank r, LSI begins by taking the singular value
decomposition (SVD) of A:

A =TXD' (1)
where T is an n X r orthogonal matrix, ¥ isan r x r
diagonal matrix, and D is an r X r orthogonal ma-
trix. Matrices T and D are the left and right singular
vectors of A, and the diagonal elements of 3 are the
singular values. It can be shown (cf. [8]) that if the
columns of A are centered and standardized to unit
length, the singular vectors are the principal compo-
nents of the co-occurrence matrices (and by virtue of
standardization, the correlation matrices) A'A and
AA', while the singular values comprise the positive
squares roots of the co-occurrence matrix eigenvalues.
Thus the diagonal elements of 3, oy > 03 > --- > 0,
show the amount of variance captured by each prin-
cipal component. By choosing to retain only the first
k principal components, where k < r and setting the
remaining 7 — k singular values to zero, by matrix
multiplication LSI derives Ay, the best rank-k ap-
proximation of A, in the least-squares sense.

Advocates of LSI argue that A provides a bet-
ter model of term-document associations than the
full-rank matrix can. Reducing the dimensionality
of the model lessens the influence of random, idiosyn-
cratic word choice in our similarity judgements. Thus
LSI is capable of overcoming problems of synonymy
and polysemy, allowing an IR system to infer query-
document similarity even in the absence of any shared
indexing terms.

1.2 Estimating the Intrinsic Dimen-
sionality

It is a mainstay of LSI research that dimensional-
ity truncation entails a noise reduction procedure.
According to Berry and Dumais, “the truncated
SVD...captures most of the important underlying
structure in the association of terms and documents,
yet at the same time removes the noise or variabil-
ity in word usage that plagues word-based retrieval
methods” [2]. As Chris Ding notes, this argument
begs an important question: which singular vectors
are meaningful, and which comprise noise [4, 5|7
That is, what value should developers choose for k,
the representational dimensionality of an LSI system?
Landauer and Dumais ascribe great importance to
the choice of k [12], arguing that if k is too small,
the similarity model will lack sufficient power to col-
locate similar documents. On the other hand, as k
approaches r, the model becomes overfitted, inferring
spurious term-document relationships.

The intuition behind LSI’s dimensionality reduc-
tion lies in the argument that small singular val-
ues imply weak evidence for retaining singular vec-
tors. In Ding’s dual-similarity model of LSI, this in-
tuition gains theoretical motivation insofar as the co-
occurrence matrix eigenvalues describe each dimen-
sion’s contribution to the overall likelihood of the
LSI model. According to Ding, we should retain
those singular vectors whose associated eigenvalues
increase the model likelihood [4, 5]. Using this the-
ory, Ding identifies an “optimal semantic subspace”
for several IR test collections. By analyzing the eigen-
values, Ding derives an estimate of a corpus’ intrinsic
dimensionality which correlates strongly with good
performance.

2 Amended Parallel
(APA)

Like Ding, we suggest that an analysis of the eigenval-
ues provides good evidence for estimating the optimal
dimensionality of an LSI system. However, we offer
another motivation for reducing the number of di-
mensions. Instead of removing noise, we argue that
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dimensionality truncation improves retrieval by re-
moving error from the VSM similarity function. The
proposed method, APA, counsels us to retain those
dimensions whose corresponding eigenvalues are sig-
nificantly greater than the eigenvalues expected if the
columns of A were orthogonal. In other words, we
argue that LSI’s dimensionality reduction is merited
to the extent that the observed data violate the as-
sumption of term orthogonality inherent in the vector
space model (cf. [17]).

To see that this is the case, let S be the px p covari-
ance matrix of A, such that S = (A — p)(A — ),
where the p-vector p is the column-wise means of
A. Also let D be the p x p diagonal matrix con-
taining the square roots of the diagonal elements of
S. Then R, the correlation matrix of A, is given by
R =D~'SD ' If R is diagonal then the p columns
of A are the principal components and eigenvalues
are all equal. Consider the matrix R below:

(1)

with the characteristic equation:

(2)

1-A 0

|S_>‘I|=‘ 0 1-2A

= -N-N =0 ©)

which gives the eigenvalues ' = ( 1 1 ) and eigen-
vectors R. Thus if A were orthogonal (as is assumed
under the VSM), with R = I, principal component
analysis yields no benefit, and dimensionality reduc-
tion is not appropriate because each principal com-
ponent describes equal variance.

2.1 Implementation of APA

APA operates by retaining principal components
with eigenvalues that are significantly larger than the
eigenvalues expected if the columns of A were orthog-
onal. Assuming multivariate normality of terms, the
technique uses a statistical simulation to test the null
hypothesis that each observed eigenvalue )\ is equal
to the corresponding eigenvalue, Agg, expected under
term independence. We thus reject the & components
whose eigenvalues Ay are significantly smaller than
)\Ok-

To estimate the eigenvalues under the null hypoth-
esis, let Ag be an n x p matrix drawn from the multi-
variate normal distribution with mean vector g and
covariance matrix Sg = I,. From A§ we calculate
the principal components, with eigenvalues Aj. By
generating a large number, B, replications of Aj and
finding their average, X;, we may derive a point esti-
mate of the true Ag.

Under Horn’s parallel analysis, we retain those
principal components where A > ng. However,
this approach is somewhat unsatisfying insofar as it
takes no account of the standard error of X;. Thus
amended parallel analysis supplements the point es-
timate of X; with an estimate of its standard error to
derive a confidence interval upon which we base each
hypothesis test, Hy : Ax = Aok-

Without knowledge of the distribution of Ag we
derive a 1 — a% confidence interval (CI) for its ele-
ments by recourse to non-parametric methods. For
each X;k we use the bootstrap-t method described in
[7] to generate our CI. Let the standard error of Ay,
be given by Equation 4:

B
ser =D _Dok(®) =X /B-1)} ()
=1

where A3, (b) is k" eigenvalue of the b*" draw of Aj.
Using this estimate of the standard error we calculate
Z*(b), a non-parametric estimate of the likelihood of
seeing the bth observation of Aj,:

i Az (D) — Xy
VA (b): Ok(s/\)ek 0k

()

We thus find the at® percentile of Z*(b) by the value
(@ such that

#{2*(4) <T9}/B = .

In other words if we have B = 100 bootstrap itera-
tions, the estimate of the fifth percentile point is the
fifth largest value of Z*(b) and the 95th percentile is
given by the 95th largest Z*(b). This approach essen-
tially allows us to construct a pseudo-probability ta-
ble, tailored to the distribution of the observed data.
Thus we observe the variability of our test statistic
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Figure 1: APA applied to physiology data

over a wide number of iterations, generating Z*(b)
for each of our B = b samples. Based on these cal-
culations we derive probability estimates. Having
used our pseudo-table of Z*(b) values to derive an
appropriate f(a), our bootstrap-t confidence interval
is given by Equation6.

(Rox — ), Xgp, — 117)) (6)
So with probability 1 — a we state that if given infi-
nite data from the same distribution that gives Ay,
the kth eigenvalue Agr would lie within the interval
specified by Equation 6.

Under APA we reject the last p— k singular vectors
whose corresponding eigenvalues, A, are significantly
smaller than the corresponding Agix. We define the
optimal value of k to be the lowest positive integer
such that Ay is less than the lower bound of the 1 — «
CI for /\Ok-

2.2 An Example

Figure 1 shows an application of APA to a small data
set concerning human physiology, where each of 60
observations contains 6 measurements. The Figure
shows 95% confidence intervals for the null eigenval-
ues, generated after B = 100 simulations. Under the
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Figure 2: APA applied to the Medline test collection

APA method we would retain the first three principal
components because only components 4-6 lie below
the null line’s confidence interval.

Figure 2 shows APA performed on the Medline test
collection. Due to the scale of the plot, the confi-
dence intervals are not shown. However, the green
dot shows the dimensionality estimation under APA.
As shown in the following Section, this prediction ap-
pears to agree with standard IR performance metrics.

3 Tests of APA’s Estimates

To test the suitability of APA for dimensionality es-
timation in IR, we compared its predictions against
several standard methods from the statistical liter-
ature [14]. These methods are summarized in Ta-
ble 1. The PA and APA methods were described
above. The Eigenvalue-one criterion suggests that
we should retain those eigenvalues greater than the
average eigenvalue. This is similar in spirit to the
70% variance rule, which retains enough eigenvalues
to account for 70% of the total variance. Finally,
Bartlett’s test of isotrapy is a x2-based hypothesis



| Abbreviation | Name |

APA Ammended Parallel Analysis

PA Horn’s Parallel Analysis

EV1 Eigenvalue-One Rule
70% var 70% Variance Rule
Bartlett’s Bartlett’s test of Isotrapy

Table 1: Standard Dimensionality Estimators

| [ CACM | CISI | CRAN | MED

Docs 3204 | 1460 1398 | 1033
Terms 5831 | 5615 1033 | 3204
kopt (ASL) 271 751 121 91
var ot kasr 04| 0.73 0.19 0.16
overfit (ASL) 0.63 | 0.63 0.93 | 0.92
Fopt (07) 1036 | 1276 661 | 151
var at ky, 1| 0.96 0.71 | 0.25
overfit (pr) 0.71 | -0.66 -0.77 | -0.95

Table 2: Corpus Stats

test, under which we retain all eigenvalues such that
the null hypothesis Hy : Ay, > Ag41. These techniques
are discussed in [11] and [15].

We tested each of these dimensionality estimators
on four standard IR test collections: the CACM data,
the CISI collection, Cleverdon’s Cranfield set, and
the Medline Corpus. To evaluate the quality of our
dimensionality predictions, we compared them with
two standard performance measures: average preci-
sion (cf. [1]) and average search length ([13]). A
summary of this information appears in Table 2. For
each collection the Table shows the number of doc-
uments and terms that it contains (after removing
stop-words), the optimal dimensionality according to
the ASL measure and according to average precision,
the percent of variance accounted for by the model
defined by each performance metric’s kope. In addi-
tion, we report the correlation between k& and each
performance metric as k increases from kopt t0 Kmqz-
This measure is intended to show the strength of an
overfitting effect encountered by adding too many sin-
gular vectors.

Focusing on the Medline data set, Figure 3 plots
mean precision against model dimensionality. The
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Figure 3: Dimensionality Predictions for Medline
(Pr)

| | CACM | CISI [ CRAN | MED |
APA 0.143 | -0.461 | -0.019 [ -0.004
PA 0.142 | -0.466 | -0.029 | -0.016
EV1 0.34 [ -0.095 | 0.352 | 0.372
70% Var | 0.127 | -0.07 | 0.378 | 0.441
Bartlett’s | 0.915 | 0.487 | 0.913 | 0.92

Table 3: Dimensionality Predictions (ASL)

Figure shows a region of optimality near £ = 150.
The Figure also shows the predictions yielded by each
of our dimensionality estimators. Figure 4 shows
ASL performance as a function of dimensionality for
the Cranfield data. In both Figures, the methods of
PA and APA appear to yield superior dimensional-
ity estimates to the other dimensionality estimators,
with APA consistently outperforming standard PA,
though by only a small margin.

Our experimental results are summarized in Tables
3 and 4. The cells of these tables contain the distance
of each prediction from k257 and kP},, respectively,
divided by k,qz, the rank of the data. Thus values
near zero indicate good predictions with respect to

precision. As the Tables show, APA performed as
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Figure 4: Dimensionality Predictions for Cranfield
(ASL)

well as or better than PA for all data sets accord-
ing to both performance measures. For the Medline
data, APA performed dramatically better than the
other methods, with similar results on the Cranfield
data with respect to ASL. APA’s performance on the
CACM data measured by ASL also appears to be
very good.

The simpler EV1 and 70% Var methods appear to
outperform APA on the CISI data, and on the CACM
and Cranfield data for the precision metric. How-
ever, it should be noted that this phenomenon may
be an artifact of the query-specific Cranfield method
of performance evaluation. In both of these cases, the
observed kZi5% and k27, were widely disparate. More-
over, the strength of an overfitting phenomenon for
these collections varied across performance metrics.
Thus the ability of the supplied queries to demon-
strate these collections’ intrinsic dimensionalities is
subject to debate. In other words, without strong
evidence for an overfitted model at k4., the consis-
tently higher estimates yielded by However, EV1 and
70% Var outperformed APA simply by virtue of their
inherent bias toward a model of high dimensionality.

| [ CACM | CISI | CRAN | MED |
APA -0.414 [ -0.821 | -0.406 | -0.063
PA -0.414 | -0.827 | -0.415 | -0.074
EVI -0.217 | -0.455 | -0.34 | 0.313
70% Var | -0.429 | -0.421 | -0.009 | 0.382
Bartlett’s | 0.396 | 0.126 | 0.527 | 0.861

Table 4: Dimensionality Predictions (pr)

4 Conclusions

Amended parallel analysis appears to give good es-
timations of model dimensionalities that lead to op-
timal performance under LSI. On three of our eight
performance observations, APA outperformed all five
previous methods of dimensionality estimation. In
the remaining five observations, APA was never the
worst performer. These results suggest that the tech-
nique merits future work. For example, we hope to
experiment on applications of APA that rely on wider
confidence intervals. Because we chose a = 0.05 for
these experiments, our CI's were very narrow, yield-
ing predictions close to those of Horn’s parallel analy-
sis. It appears that given the complex models native
to IR, with their corresponding legions of eigenval-
ues, a looser definition of significant departure from
independence would improve predictions.

Most importantly, however, the observed lack of
agreement between our IR performance metrics—ASL
and precision—-with respect to k,p; demands more re-
search. Insofar as most ad hoc approaches to opti-
mizing k have relied on such metrics for retrospec-
tive model selection, these results argue for the im-
portance of query-independent dimensionality esti-
mators, such as APA. However, the complexity of our
findings suggests that comparing the quality of eigen-
value estimation methods may also need to include
query-independent metrics such as cross-validation.
In particular in upcoming work we will test APA and
other dimensionality estimators on a series of simu-
lated data sets. Such approaches will be useful in
future work on larger corpora, which we also plan to
undertake.

Nonetheless, APA’s performance appears encour-
aging. Not only does the method yield good dimen-



sionality estimates for IR, but it also puts LSI’s di-
mensionality truncation on firmer theoretical ground.
The success of APA suggests that dimensionality re-
duction is merited to the extent that a corpus’ in-
dexing features depart from orthogonality. Rejecting
eigenvalues smaller than those expected under term
independence implies that LSI improves retrieval by
removing error from the cosine similarity function
that is native to the vector space model of IR.
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